5,079 research outputs found

    A typechecker for bijective pure type systems

    Get PDF

    Some categorical properties for a model for second order lambda calculus with subtyping

    Get PDF

    A programming logic based on type theory

    Get PDF

    A programming logic for FωF_\omega

    Get PDF

    Cpo-models for second order lambda calculus with recursive types and subtyping

    Get PDF

    Microbial growth response to substrate complexity under different temperature regimes

    Get PDF
    Soil microbial communities mediate soil feedbacks to climate change and a thorough understanding of their response to increasing temperatures is central for predicting climate-induced changes in carbon fluxes. However, it is still unclear how microbial communities will change their structure and functions in response to temperature change and availability of organic carbon of varying complexity. Here, we present results from a lab-based study where soil microbial communities were exposed to different temperatures and organic C of different stability. Soil samples were collected from vegetated and bare fallow plots located in two regions in southwest Germany varying in climatic and edaphic conditions. Soils amended with cellobiose (CB), xylan or coniferyl alcohol (CA, lignin precursor) were incubated at 5, 15 and 25 °C. We generally found highest cumulative respiration (CO2-C) at 25 °C in all substrate treatments even though total microbial growth (measured as total extracted DNA) was higher at 15 °C. Fungal biomass (measured from ergosterol content and fungal PLFAs) responded significantly to added substrate and incubation temperature, with higher fungal biomass at 5 or 15 °C than 25 °C in all substrate amendments. Xylan addition resulted in significantly higher ergosterol contents than for CB and CA. Within region, land-use significantly affected fungal biomass response to added substrate; however, the temperature response was similar between fallow and vegetated plots. Bacterial community response was also significantly affected by substrate quality. In contrast to fungi, the growth response of Gram+ and Gram- bacteria declined in the order CB > xylan > CA. Currently, we are analyzing the qPCR data understand the response of different bacterial taxa to temperature and substrate complexity. Our results demonstrate the importance of the interaction between soil temperature and substrate quality for soil microbial community functions and growth strategies

    Interaction and observation: categorical semantics of reactive systems trough dialgebras

    Full text link
    We use dialgebras, generalising both algebras and coalgebras, as a complement of the standard coalgebraic framework, aimed at describing the semantics of an interactive system by the means of reaction rules. In this model, interaction is built-in, and semantic equivalence arises from it, instead of being determined by a (possibly difficult) understanding of the side effects of a component in isolation. Behavioural equivalence in dialgebras is determined by how a given process interacts with the others, and the obtained observations. We develop a technique to inter-define categories of dialgebras of different functors, that in particular permits us to compare a standard coalgebraic semantics and its dialgebraic counterpart. We exemplify the framework using the CCS and the pi-calculus. Remarkably, the dialgebra giving semantics to the pi-calculus does not require the use of presheaf categories

    Auto- und Heterotrophic Respiration in the Hohenheim Climate Change Experiment - The Importance of Temperature Change and Vegetation Period

    Get PDF
    Current Climate change (CC) research in soil science mainly focusses on natural ecosystems, without considering the potential of agro-ecosystems for feedback mechanisms to CC and CC mitigation through Carbon(C)-sequestration. We expect that CC induces increasing water limitation under elevated temperature, lowers the intensity of soil respiration and changes the ratio between the amount of root-dependent and basal soil respiration. Such changes might be due to differences in the intrinsic temperature and moisture sensitivity of microbial and root respiration and due to altered root exudation. In this project, we focus on CC-induced effects on plant-dependent and basal soil respiration to improve the estimation of long-term soil organic matter stabilization. Within the Hohenheim Climate Change (HoCC) experiment (established in 2008), barley plants were pulse-labelled with 20-atom% 13CO2 for 4 h using ventilated transparent chambers on warmed and control plots in an agricultural field. The labeling was done during three different stages (advanced tillering, booting and grain-filling) of the vegetation period, at which C-sink strength of shoot and root differs according to plant development. CO2-fluxes and isotopic composition were measured in real time in the field for the first 50h (post labeling) using a 13CO2 isotope analyzer. Results from tracing 13C-fluxes will clarify how soil moisture and long-term elevated temperature affect the overall C-balance in agricultural soils in dependence of the vegetation period. This will allow estimations of direction and strength of feedback mechanisms of terrestrial C-cycling under CC. Overall, insights obtained in this project will provide better understanding of the CC impact on and of temperate agricultural production systems

    Microbial carbon turnover in the detritusphere

    Get PDF
    Microbial decomposition processes at the soil-litter interface involves a complex food web including fungi, bacteria, and archaea that compete for the organic matter. During the decomposition, the nutrient quantity and quality changes as well as the microbial community composition. It is still a challenge to identify and quantify active microbial species in concurrency with their absolute contribution to the carbon (C) turnover. In the frame of the DFG-Project (FOR 918) “Carbon flow in belowground food webs assessed by isotope tracers“ we determined the C flow and turnover of differently aged maize litter in bacteria and fungi of an arable soil. A microcosm experiment was set up with C-13-labeled and unlabeled maize litter on top of soil cores. A reciprocal transplantation of the labeled litter on soil cores with unlabeled litter allowed us to follow the C flow into different microbial groups at the early (0-4d), intermediate (4-12d) and late stage (28-36d) of litter decomposition. We analyzed microbial CO2 respiration, microbial biomass and PLFA pattern in the top 3 mm of the soil cores. To identify and quantify microbial species feeding on the substrate and to assess their degree of C-13 assimilation, DNA stable isotope probing followed by gene-targeted sequencing of bacteria and fungi are currently performed on the soil metagenome. We expected specific microbial communities (copio- and oligotrophic) involved in maize litter decomposition at the different stages of litter decay. During the initial days of the experiment, up to 17% of the CO2-C was maize-derived C. The C-13 content in the CO2 decreased with continuous decomposition of the litter. The highest absolute amount of maize-derived C was found in gram-positive bacteria in the early stage of litter decomposition. For fungi, the highest maize C incorporation was in the intermediate stage of litter decomposition. We calculated a faster C turnover in the fungal biomass than in the bacterial biomass for all three decomposition stages. But during the later stage of litter decomposition, maize-derived C was less utilized by both bacteria and fungi. These results will be concluded by the quantitative DNA-SIP method to provide a species-resolved contribution to the C turnover in the microbial food web at different decomposition stages in the detritusphere
    • …
    corecore